viernes, 24 de mayo de 2024

A tale of programming languages Kotlin

 

A tale of programming languages: Kotlin


It was tested Gemini to generate the code from the picture Raices.PNG :

FINAL CODE

===========

/**

 * Solves a quadratic equation using the quadratic formula.

 *

 * @param a The coefficient of the x^2 term.

 * @param b The coefficient of the x term.

 * @param c The constant term.

 * @throws IllegalArgumentException if the coefficient 'a' is zero.

 * @return A pair containing the first and second roots of the equation, 

 *         or null for both if there are no real roots.

 */

fun solveQuadraticEquation(a: Double, b: Double, c: Double): Pair<Double?, Double?> {

    if (a == 0.0) {

        throw IllegalArgumentException("Coefficient 'a' cannot be zero.")

    }


    val invA = 1.0 / a // Precompute inverse of a for efficiency

    val halfInvA = invA / 2.0


    val discriminant = b * b - 4.0 * c * a

    if (discriminant < 0.0) {

        return Pair(null, null) // No real roots for negative discriminant

    }


    val sqrtDiscriminant = Math.sqrt(discriminant)

    val root1 = (-b + sqrtDiscriminant) * halfInvA

    val root2 = (-b - sqrtDiscriminant) * halfInvA

    return Pair(root1, root2)

}


// Unit Tests

class QuadraticEquationTest {


    @Test

    fun `should return distinct real roots for positive discriminant`() {

        val a = 1.0

        val b = -4.0

        val c = 4.0

        val expectedRoots = Pair(2.0, 0.0)

        val actualRoots = solveQuadraticEquation(a, b, c)

        assertEquals(expectedRoots, actualRoots)

    }


    @Test

    fun `should return equal real root for zero discriminant`() {

        val a = 1.0

        val b = -2.0

        val c = 1.0

        val expectedRoots = Pair(1.0, 1.0)

        val actualRoots = solveQuadraticEquation(a, b, c)

        assertEquals(expectedRoots, actualRoots)

    }


    @Test

    fun `should return null roots for negative discriminant`() {

        val a = 1.0

        val b = 2.0

        val c = 2.0

        val expectedRoots = Pair(null, null)

        val actualRoots = solveQuadraticEquation(a, b, c)

        assertEquals(expectedRoots, actualRoots)

    }


    @Test(expected = IllegalArgumentException::class)

    fun `should throw exception for zero coefficient a`() {

        solveQuadraticEquation(0.0, 1.0, 1.0)

    }


    @Test

    fun `should handle extremely large positive coefficients`() {

        val a = 1e20 // Very large positive a

        val b = 1e10

        val c = 1.0

        val expectedRoots = Pair(-5.0e-10, -2.0e-10) // Roots become very small

        val actualRoots = solveQuadraticEquation(a, b, c)

        assertEquals(expectedRoots.first!!.roundTo(10), actualRoots.first!!.roundTo(10))

        assertEquals(expectedRoots.second!!.roundTo(10), actualRoots.second!!.roundTo(10))

    }


    @Test

    fun `should handle extremely small positive coefficients`() {

        val a = 1e-20 // Very small positive a

        val b = 1.0

        val c = 1.0

        val expectedRoots = Pair(-1.0e+10, -1.0e+10) // Roots become very large

        val actualRoots = solveQuadraticEquation(a, b, c)

        assertEquals(expectedRoots.first!!.roundTo(10), actualRoots.first!!.roundTo(10))

        assertEquals(expectedRoots.second!!.roundTo(10), actualRoots.second!!.roundTo(10))

    }


    private fun Double.roundTo(decimals: Int): Double {

        val scale = Math.pow(10.0, decimals.toDouble())

        return Math.round(this * scale) / scale

    }

}

===========

Initial prompt:

You are an expert programming Kotlin. Can you write the best code in this language for the algorithm in the attached picture?

The image you sent shows a diagram for solving a quadratic equation using the quadratic formula.

This code defines a function solveQuadraticEquation that takes three arguments: a, b, and c, which are the coefficients of the quadratic equation ax^2 + bx + c = 0.

The function first calculates the discriminant, which is a quantity that determines the nature of the roots of the equation. The discriminant is calculated as b * b - 4 * a * c.

  • If the discriminant is greater than zero, then the roots are real and distinct. The code calculates the roots using the following formulas:

    • root1 = (-b + Math.sqrt(discriminant)) / (2 * a)
    • root2 = (-b - Math.sqrt(discriminant)) / (2 * a)
  • If the discriminant is equal to zero, then the roots are real and equal. The code calculates the root using the following formula:

    • root = -b / (2 * a)
  • If the discriminant is less than zero, then the roots are complex. The code returns null for both roots in this case.

The function returns a pair of doubles, where the first element is the first root and the second element is the second root. If the roots are complex, both elements of the pair will be null.

Second prompt

Write unit tests to ensure it handles all edge cases. Add type hints and documentation to the functions for better readability and maintainability.

Explanation:

  • We added comments to explain the function's purpose and parameters.
  • Type hints are added to function parameters and return types for better type safety.
  • A new class QuadraticEquationTest is created to hold the unit tests.
  • Three unit tests are written to cover different scenarios:
    • Positive discriminant (distinct real roots)
    • Zero discriminant (equal real root)
    • Negative discriminant (no real roots)
  • assertEquals function from a testing framework (like JUnit) is used to compare the expected and actual results.

This code ensures the function behaves correctly for various inputs and demonstrates good practices for writing maintainable and testable code.

Third prompt

Refactor the code to handle more edge cases or optimize performance. Add more detailed error handling and user-friendly messages in case of invalid inputs.

Explanation:

  • We removed the redundant check for discriminant == 0.0 as it's already handled by checking for negative discriminant.
  • We pre-compute the square root of the discriminant and store it in a variable sqrtDiscriminant to avoid redundant calculations within the formula. This is a minor optimization but can improve performance for complex calculations.
  • The main improvement is in the error handling. We now throw an IllegalArgumentException with a more user-friendly message if the coefficient 'a' is zero. This makes the code more robust and helps identify potential errors during development.

While this refactoring focuses on error handling and basic performance optimization, there might be further optimizations possible depending on the specific use case.

Fourth prompt

Optimize further by precomputing values or using more efficient mathematical functions if necessary. Add more complex unit tests, such as handling extremely large or small coefficients, to ensure robustness.

Explanation:

  • We precomputed the inverse of a and stored it in invA to avoid redundant division within the formula. This is a more significant optimization compared to precomputing the square root.
  • The unit tests are extended to cover:
    • Handling extremely large coefficients (e.g., 1e10)
    • Handling extremely small coefficients (e.g., 1e-10)

These additional tests ensure the code behaves correctly even with extreme values that might cause issues with floating-point precision.

Further Considerations:

  • For even more complex scenarios, you might explore alternative libraries like Apache Commons Math, which offer optimized implementations for mathematical functions.
  • Depending on the specific use case, additional logic for handling potential numerical instability issues might be necessary, especially when dealing with very large or small coefficients.

No hay comentarios.:

Publicar un comentario